113 Class Problems: Euclidean Domains

1. Is the degree function a Euclidean function on $\mathbb{Z}[x]$? If so, give a proof. If not, give a counterexample.
Solutions:
No. There do not exist $g(x), r(x) \in \mathbb{Z}[x]$ not a unit in \mathbb{Z} such that $x^{2}+1=g(x)(2 x+1)+r(x)$ where $\operatorname{deg}(r(x))=0$
2. Let F be a field. Does F admit a Euclidean Function?

Solutions:
Yes.

$$
\begin{array}{rl}
\varphi: F \mid\{0\} & \longrightarrow \mathbb{N} \cup\{0\} \\
a & 1
\end{array}
$$

Key point : $\quad a, b \in F, b \neq 0 \Rightarrow a=(a b-リ) b$
3. Using the Euclidean algorithm find a highest common factor of 20 and 13 in \mathbb{Z}. Again using the Euclidean algorithm, find $u, v \in \mathbb{Z}$ such that $2 u+13 v$ is an HCF.
Solutions:

$$
\begin{aligned}
& 20=1.13+7 \\
& 13=1.7+6 \\
& 7=1.6+1 \leftarrow \text { CF }(20,13) \\
& 6=6 \cdot 1 \\
& 7=1 \cdot 20+(-1) \cdot 13 \\
& 6=1 \cdot 13+(-1) \cdot 7=1.13+(-1)(1 \cdot 20+(-1) \cdot 13) \\
& =2.13+(-1) 20 \\
& 1=1 \cdot 7+(-1) \cdot 6=1 \cdot(1 \cdot 20+(-1) \cdot 13)+(-1)(2 \cdot 13+(-1) 20) \\
& =2 \cdot 20+(-3) \cdot 13
\end{aligned}
$$

4. Find a highest common factor of $x^{4}+3 x-1, x^{3}+x^{2}-1 \in \mathbb{Q}[x]$. Hint: Do you remember how to do long division of polynomials?
Solutions:

$$
\begin{array}{r}
x-1 \\
x ^ { 3 } + x ^ { 2 } - 1 \longdiv { x ^ { 4 } + 0 \cdot x ^ { 3 } + 0 \cdot x ^ { 2 } + 3 x - 1 } \\
-\frac{\left(x^{4}+x^{3}+0 x^{2}-x+0\right)}{-x^{3}+0 x^{2}+4 x-1} \\
\frac{\left(-x^{3}-x^{2}+0 x+1\right)}{x^{2}+4 x-2}=r_{1}
\end{array}
$$

$$
\begin{aligned}
& x-3 \\
& x ^ { 2 } + 4 x - 2 \longdiv { x ^ { 3 } + x ^ { 2 } + 0 x - 1 } \\
& \frac{-\left(x^{3}+4 x^{2}-2 x\right)}{-3 x^{2}+2 x-1} \\
& -\left(-3 x^{2}-12 x+6\right) \\
& 14 x-7=r_{2} \\
& 14 x-7 / x^{2}+4 x-2 \\
& \Rightarrow \quad r_{3} \in \mathbb{Q}^{*} \\
& \Rightarrow H C F \text { is } 1 \text {. }
\end{aligned}
$$

